Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves.
نویسندگان
چکیده
Nitrogen uptake and metabolism are central for vegetative and reproductive plant growth. This is reflected by the fact that nitrogen can be remobilized and reused within a plant, and this process is crucial for yield in most annual crops. A population of 146 recombinant inbred barley lines (F(8) and F(9) plants, grown in 2000 and 2001), derived from a cross between two varieties differing markedly in grain protein concentration, was used to compare the location of QTL associated with nitrogen uptake, storage and remobilization in flag leaves relative to QTL controlling developmental parameters and grain protein accumulation. Overlaps of support intervals for such QTL were found on several chromosomes, with chromosomes 3 and 6 being especially important. For QTL on these chromosomes, alleles associated with inefficient N remobilization were associated with depressed yield and higher levels of total or soluble organic nitrogen during grain filling and vice versa; therefore, genes directly involved in N recycling or genes regulating N recycling may be located on these chromosomes. Interestingly, the most prominent QTL for grain protein concentration (on chromosome 6) did not co-localize with QTL for nitrogen remobilization. However, QTL peaks for nitrate and soluble organic nitrogen were detected at this locus for plants grown in 2001 (but not in 2000). For these, alleles associated with low grain protein concentration were associated with higher soluble nitrogen levels in leaves during grain filling; therefore, gene(s) found at this locus might influence the nitrogen sink strength of developing barley grains.
منابع مشابه
Genetic analysis of the function of major leaf proteases in barley (Hordeum vulgare L.) nitrogen remobilization.
Most of the nitrogen harvested with the seeds of annual crops is remobilized and retranslocated within the plant between anthesis and plant death. While chloroplasts contain most of the reduced nitrogen present in photosynthetically active leaf cells, the (major) pathway(s) involved in the degradation of their proteins prior to the retranslocation of the resulting amino acids are unknown. In th...
متن کاملPost-anthesis changes in internodes dry matter, stem mobilization, and their relation to the grain yield of barley (Hordeum vulgare L.). Mohsen Abouzar1, Maryam Shahbazi2*, Sepideh Torabi1, Hamid Reza Nikkhah3 and Soheil Nadafi2
Making an increase in the yield of agricultural plants including barely is considered as the main challenge for researchers in agriculture related sciences. Water-soluble carbohydrates transport and source–sink relations have a significant effect on the grain yield. This study was carried out in order to examine genotypic variation of storage and remobilization ability of carbohydrates in eight...
متن کاملIdentification of genomic loci controlling phenologic and morphologic traits in barley (Hordeum vulgare L.) genotypes using association analysis
Association mapping is a technique with high resolution for QTL mapping based on linkage disequilibrium and has shown more promising for describing genetically complex traits. In addition, it is a powerful tool for describing complex agronomic traits and identifying alleles that can contribute to enhance the desired traits. In this study, whole genome association mapping was used in a set of 14...
متن کاملQuantitative Trait Loci and Inter-Organ Partitioning for Essential Metal and Toxic Analogue Accumulation in Barley.
The concentrations of both essential nutrients and chemically similar toxic analogues accumulated in cereal grains have a major impact on the nutritional quality and safety of crops. Naturally occurring genetic diversity can be exploited for the breeding of improved varieties through introgression lines (ILs). In this study, multi-element analysis was conducted on vegetative leaves, senesced fl...
متن کاملEvaluation of Biochemical Traits and Dry Matter Remobilization of Barley (Hordeum vulgare L.) in Relay Intercropping with Chickpea (Cicer arietinum L.) under Deficit Water Stress Conditions
In order to investigate the effect of deficit water stress and different combinations of relay intercropping of chickpea with barley on some biochemical traits and grain yield, a field experiment was conducted at College of Agriculture and Natural Resources of Darab, Shiraz University during 2017-2018 cropping season, as split plot based on a randomized complete block design with three replicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 54 383 شماره
صفحات -
تاریخ انتشار 2003